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Section 1. Solve two linear equations for two unknowns by Cramer’s rule 

Reason or comment Statement 

 100) This document derives the least squares algorithm described in statement (410) 

to calculate a linear trendline passing near any number of given sample points. 

Purpose of Section 1.  This Section 1 derives a method called Cramer’s rule in theorem (104), which 

solves two simultaneous linear equations in two variables for the unique 

values of those two variables that satisfy both equations. 

Define mathematical 

symbols & abbreviations. 

101) The following table lists a few mathematical symbols and abbreviations used 

in this document. 

 

Symbol or abbreviation Meaning 

≡ “is defined as”  or  “equals by substituting one or more definitions” 

∈ “is an element of (the following set)”  or  “in (the following set)” 

…   or   LLLL “et cetera”  or  “etc.”  or  “and so on” (The symbol itself is called an ellipsis.) 

{ … } a set whose elements are enclosed by the pair of braces (“curly brackets”) 

(For example,  k ∈ { 1, 3, 5, 7, 9 }  means  “k  is one of five single-digit odd integers.”) 

def;   defs “definition”  or  “is defined as”;   “definitions” 

eqn;   eqns “equation”;   “equations” 

stmt;   stmts “statement”;   “statements” 

thm;   thms “theorem”;   “theorems” 

 

Reason or comment Statement 

Define a general 

2××××2 matrix and present a 

specific numerical 

example. 

102) A 2-by-2 matrix is an array of 4 numerical values arranged in 2 horizontal 

rows by 2 vertical columns and enclosed by a pair of square brackets, such as 

 








DC

BA
   for any values  A ,  B ,  C ,  and  D ; or for example   









97

53
 . 

Define the determinant 

of a 2×2 matrix. 

103) The determinant of a 2×2 matrix is a numerical value characterizing the 

matrix and is typically denoted by enclosing the array of elements by vertical 

bars instead of by square brackets.  The value of the determinants of the two 

matrix examples shown in the previous statement (102) are defined as 

By definition of a 

determinant. 
 

DC

BA
 ≡    A D  −  B C , and so specifically 

An example where  A = 3 ,  

B = 5 ,  C = 7 ,  and  D = 9 . 
 

97

53
 ≡    (3) (9)  −  (5) (7)    =    27  −  35  =    −8 . 
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Reason or comment Statement 

An alternate notation for a 

2×2 determinant is 










DC

BA
det  ≡  AD − BC . 

 There is an extensive mathematical field of study called “matrix theory” or 

“linear algebra” that describes the properties and applications of matrices with 

arbitrary sizes and determinants of square matrices (that is, matrices whose 

number of rows equals the number of columns).  In this document only the 

definitions (102) and (103) will be used in statements (104) and (410) below. 

This theorem expresses 

Cramer’s rule for solving 

2 linear equations in 2 

unknowns. 

104) By Cramer’s rule (named after the Swiss mathematician Gabriel Cramer, who 

lived 1704-1752 but was not the first to state the rule), the values of two real 

variables  x  and  y  that satisfy both of the two simultaneous linear equations 

 A x + B y = C and 

 F x + G y = H 

  can be calculated in terms of the known real constants  A ,  B ,  C ,  F ,  G ,  and  

H  by 

Define  D  to be used for 

calculating  x  and  y . 
 D ≡ A G  −  B F ≡ 

GF

BA
 ≡    Cramer’s denominator, 

These solutions for  x  and  

y  satisfy both linear 

equations given above. 

 x = 
D

HBGC −
 ≡ 

GH

BC

D

1
 ,  and 

 y = 
D

FCHA −
 ≡ 

HF

CA

D

1
 ,  assuming that  D ≠ 0 . 

1
st
 given eqn in this thm.  Proof: Step #1: A x + B y = C is the 1

st
 assumed constraint. 

2
nd

 given eqn in this thm.   Step #2: F x + G y = H is the 2
nd

 assumed constraint. 

Multiply both equal sides 

of eqn in step #1 by  G . 
  Step #3: A G x + B G y = C G . 

Multiply both sides of the 

eqn in step #2 by  − B . 
  Step #4: − B F x − B G y = − B H . 

Add eqns in steps #3 and 

#4 using algebra. 
  Step #5: (A G  −  B F)  x   +   0    =    C G  −  B H . 

Multiply both sides of the 

eqn in step #1 by  − F . 
  Step #6: − A F x − B F y = − C F . 

Multiply both sides of the 

eqn in step #2 by  A . 
  Step #7: A F x + A G y = A H . 

Add eqns in steps #6 and 

#7 using algebra. 
  Step #8: 0   +   (A G  −  B F )  y    =    A H  −  C F . 
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Reason or comment Statement 

Define  D  (called 

Cramer’s denominator) 

as the common expression 

in both steps #5 and #8;   

def (103) of determinant. 

  Step #9: D ≡ A G  −  B F ≡ 
GF

BA
 . 

Rearrange eqns in 

steps #5 and #9;   

def (103) of determinant. 

  Step #10: x = 
D

HBGC −
 ≡ 

GH

BC

D

1
 . 

Rearrange eqns in 

steps #8 and #9;   

def (103) of determinant. 

  Step #11: y = 
D

FCHA −
 ≡ 

HF

CA

D

1
 . 

   This Cramer’s rule (104) will be used below in statement (410). 
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Section 2. Introduce absolute values, limits of functions, and iterative sums 

Reason or comment Statement 

Purpose of this Section 2. 200) This Section 2 introduces the absolute value function that is probably already 

familiar to the reader from a study of algebra, the mathematical concept of 

limits that is one of the fundamental ideas on which calculus is based, and the 

notation for an iterative summation.  Specifically, limits will be used 

explicitly in statements (302), (303), (304), and (306) in Section 3 below to 

find slopes of lines that are tangent to a curve with an operation called a 

“derivative” from differential calculus.  For the sake of brevity in this 

introductory Section 2, only one simple example will be presented of the limit 

of a particular function at a point for which the function’s value is not defined. 

Overview of stmts (201) 

through (207). 

 The definition of the absolute value function and proofs of some of its 

properties follow in statements (201) through (207) for use in later derivations. 

Define the absolute value 

of any real number. 
201) (The absolute value of  q)   ≡   | q |   ≡   





<−

≥

0if

or,0if

qq

qq
 for any real  q . 

Theorem that the absolute 

value is nonnegative. 
202) | q |    ≥    0 for any real  q . 

Def (201);   assume q ≥ 0 .  Proof: If q ≥ 0 then     | q |   = q ≥   0 . Otherwise, 

Def (201);   assume q < 0 .   if q < 0 then     | q |   = − q >   0 . 

Theorem that the square 

of any real number equals 

the square of the absolute 

value of that number. 

203) q
2
    =    |q |

2
 for any real  q . 

Def (201).   Square both 

sides of eqn  q   =  |q |  . 
 Proof: If q ≥ 0 then q   =  |q |  so q

2
   = |q |

2
 .  Otherwise, 

Def (201).  q
2
  =  (−1)

2
 q

2
 

=  ((−1) q)2
  ≡  (−q)

2
 ; 

−q   =  |q |   by def (201). 

  if q < 0 then −q   =  |q |  so q
2
   = (−q )

2
 =   |q |

2
 . 

Theorem that any real 

value is less than or equal 

to its absolute value. 

204) q     ≤    |q | for any real  q . 

Def (201).  Proof: If q ≥ 0 then q    =   |q | .  Otherwise, 

Assumption;   algebra 

with  q < 0 ;   def (201). 
  if q < 0 then q   <   0   <   −q    =   |q | ,      so      q   <    |q | . 
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Reason or comment Statement 

Theorem that the 

absolute value of a 

product equals the 

product of the absolute 

values. 

205) | a b |    =    |a |  |b | for any real values  a  and  b . 

a b  ≥  0   with def (201);    

a  =  |a |   and   b  =  |b |  

by def (201). 

 Proof: If  a ≥ 0  and  b ≥ 0  then    | a b |    =    a b    =    |a |  |b | . 

a b  <  0   with def (201);    

algebra;    a  =  |a |   and   

−b  =  |b |   by def (201). 

  If  a ≥ 0  and  b < 0  then    | a b |    =    − (a b)    =    a (−b)   =   |a |  |b | . 

a b  <  0   with def (201);    

algebra;    −a  =  |a |   and   

b  =  |b |   by def (201). 

  If  a < 0  and  b ≥ 0  then    | a b |    =    − (a b)    =    (−a) b   =   |a |  |b | . 

a b  >  0   with def (201);    

algebra;    −a  =  |a |   and   

−b  =  |b |   by def (201). 

  If  a < 0  and  b < 0  then    | a b |    =    a b    =    (−a) (−b)   =   |a |  |b | . 

Theorem. 206) If   r
2
 ≤ s

2
   then   r ≤ s for any nonnegative real values  r ≥ 0  and  s ≥ 0 . 

  Proof: If   r ≥ 0 ,   s ≥ 0 ,   and   r
2
 ≤ s

2
   then 

Subtract  r
2
  from both 

sides of the inequality  

r
2
 ≤ s

2
 ;   algebra using 

the distributive law twice. 

  0    ≤    s
2
  −  r

2
    =    

876
0

)()(

≥

+− rsrs  , so 

s + r  ≥  0   must be 

multiplied by   s − r  ≥  0   

to make the product 

nonnegative as required. 

  0    ≤    s − r , so 

Add  r   to both sides of 

the inequality   0  ≤  s − r . 
  r    ≤    s . 

This famous theorem 

is called the 

triangle inequality. 

207) | a + b |    ≤    | a |  +  | b | for any real values  a  and  b . 

 This triangle inequality means the absolute value of a sum of 2 real numbers 

is less than or equal to the sum of the absolute values of those numbers. 

Multiply both sides of thm 

(204) by  2  with  q = a b . 
 Proof: Step #1: 2 a b    ≤    2  |ab | . 

Thm (203);   algebra.   Step #2: | a + b |
2
 =    (a + b)

2
    =    a

2
  +  2 a b  +  b

2
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Reason or comment Statement 

Add   a
2
 + b

2
   to both 

sides of the inequality in 

step #1. 

    ≤    a
2
  +  2 |ab |  +  b

2
 

Thms (203) and (205).     =    |a |
2
  +  2 |a | |b |  +  |b |

2
 

Algebra.     =    ( | a |  +  | b |)2
 . 

Apply thm (206) to the 1
st
 

and 6
th

 (last) sides of the 

inequality in step #2, 

using thm (202). 

  Step #3: | a + b |     ≤    | a |  +  | b | . 

Define function  f (x) 208) As an example to introduce the concept of limits, consider the function 

for any real value of the 

argument  x  except  x = 1 ,  

as explained in stmt (209). 
 f (x)   ≡   

1

22

−

−+

x

xx
 . 

Show that  f (1)  is 

undefined. 

209) That function is defined for all real values of the argument  x  where  x ≠ 1,  

because attempting to evaluate  f (x)  at  x = 1  would yield 

Eqn (208);   substitute  

x = 1;   arithmetic. 
 f (1)   ≡   

1at

2

1

2

=












−

−+

x
x

xx
   =   

11

2112

−

−+
   =   

0

0
 , 

Algebra;    as examples,   

1.0

1
 = 10 ,   

01.0

1
 = 100,   

001.0

1
 = 1000,   and   

1 /(−0.001)  =  −1000. 

 which is not defined because  
a

0
 = 0  for any  a ≠ 0,   but  

a

b
  approaches  

± infinity  as  a  approaches zero  (denoted by  a → 0)  while  b  is any nonzero 

constant  (that is, any  b ≠ 0),  so the indeterminate value  
0

0
  could possibly 

indicate any value from  − infinity  through  zero  to  + infinity. 

Stmt (213) explains ε & δ . 210) Here are a graph of  f (x)  for  0 ≤ x ≤ 2  and a table of exact values near  x = 1 . 

 

 A graph of    f (x)  ≡  
1

22

−

−+

x

xx
    as a function of  x   (undefined at  x = 1) 

 

x  =  1 + t t  ≡  x − 1 
f (x)  = 

f (1 + t) 

 2 1 4 

 1.1 0.1 3.1 

 1.01 0.01 3.01 

 1.001 0.001 3.001 

 1.0001 0.0001 3.0001 

 1 0 3    (?) 

0.9999 −0.0001 2.9999 

0.999 −0.001 2.999 

0.99 −0.01 2.99 

δ δ 

ε 
ε 
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Reason or comment Statement 

Define  t  as the difference 

between  x  and  1 . 

Explain that  f (x)  

approaches  3  in the limit 

as  x  approaches  1  

(which means  t  

approaches zero). 

211) In the limit as  x  approaches  1  (denoted by  x → 1) ,   so that   t  ≡  x − 1   

approaches zero  (denoted by   )1(lim
1

−
→

x
x

 = 0 ,   which is read as  “the limit 

as  x  approaches  1  of  x − 1  equals zero”),   it appears in the graph and 

table of statement (210) just above that the value of function   f (x)  =  f (1+ t)   

approaches  3 . Using standard mathematical symbols, this can be written as 

 )(lim
1

xf
x →

  =  )1(lim
0

tf
t

+
→

  =  3 . 

Derive a reason why to 

expect that  f (1)  

approaches  3 . 

212) To see why this expected conclusion that   )(lim
1

xf
x →

  =  3   is actually true, 

use algebra to simplify function  f (x)  as 

Def of  f (x)  in stmt (211);   

algebra;   algebra. 
 [  f (x) ]if x≠1 ≡ 

1

22

−

−+

x

xx
 = 

1

222

−

−−+

x

xxx
 = 

1

)2()2(

−

+−+

x

xxx
 

Algebra using the 

distributive law;   algebra 

that assumes  x ≠ 1 . 

  = 
1

)2()1(

−

+−

x

xx
 = x + 2 , 

The previous eqn, 

where  “→” is read as 

“approaches”;   substitute  

x = 1 ;   arithmetic. 

 so it is reasonable that    f (1)  →  [ x + 2 ]at x=1  =  1 + 2  =  3 . 

This is the standard 

formal “epsilon-delta” 

definition of when the 

limit of a function  g(x)  

equals a real number  p  

as the real argument  x  

approaches  c . 

213) pxg
cx

=
→

)(lim     for some given function  g(x)  if and only if for any positive 

real  ε  > 0  (no matter how small, but not zero)  there exists a positive real  

δ  > 0  (typically tiny, but never zero)  such that    | g(x) − p |  <  ε    for all real  

x  such that   0  <  | x – c |  <  δ ,    where  c  and  p  have any real values,   x  is 

a real variable,  and  g(x)  must be defined for all those values of  x ≠ c .    It is 

traditional to use the lowercase Greek letters  “epsilon”  (ε )  and  “delta”  (δ )  

in this so-called  “epsilon-delta”  definition of a limit. 

Restate that epsilon-delta 

definition of a limit using 

words instead of 

mathematical symbols. 

 In other words, for any given positive value denoted by  ε ,  a corresponding 

positive value denoted by  δ   can be found such that the absolute value of the 

difference between function  g(x)  and the value  p  of the limit will always be 

less than any given arbitrarily small allowed error  ε   provided that the absolute 

value of the difference between argument  x  and its target  c  is less than the 

maximum allowed deviation  δ ,  assuming  x ≠ c .   That is,  g(x)  can always 

be forced arbitrarily close to  p  by keeping  x  close enough to  c .    The figure 

in statement (210) above illustrates possible values of  ε   and  δ   with 

argument  x  approaching its target value  c = 1 ,  which forces  f (x)  to 

approach the value  p = 3  of its limit. 
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Reason or comment Statement 

Stmts (214) through (216) 

introduce sigma  (∑)  

notation for iterative sum. 

 Statements (214) and (215) just below define and present an example of the 

sigma  (∑)  notation for an iterative summation, and theorem (216) uses that 

notation to express an important property of limits. 

Define sigma  (∑∑∑∑ )  

notation for an iterative 

summation with any 

positive integer  (n ≥ 1)  

number of terms. 

214) Define the standard uppercase Greek letter sigma  (∑∑∑∑ )  notation for the 

iterative sum of any  n  arbitrary functions  h1(x) ,  h2(x) ,  h3(x) ,  …,  hn(x)  by 

 ∑
=

n

k
k

xh

1

)(    ≡   h1(x)  +  h2(x)  +  h3(x)  +  …  +  hn(x) for any integer  n ≥ 1. 

An example of def (214). 215) As a simple example of an iterative sum using sigma notation, consider 

This is read as “the sum of  

k x  from k  equals 1 to 4” 

by def (214);   algebra 

using the distributive law;   

arithmetic. 

 ∑
=

4

1

)(

k

xk  ≡ 1 x  +  2 x  +  3 x  +  4 x = (1 + 2 + 3 + 4)  x = 10 x 

Algebra;   def (214).   = x  (1 + 2 + 3 + 4) ≡ ∑
=

4

1k

kx  . 

Theorem that the limit of 

the sum of  n  arbitrary 

functions equals the sum 

of the limits of those 

functions. 

See def (214) of sigma  

(∑)  notation for iterative 

summations. 

216) 













∑

=
→

n

k
k

cx
xh

1

)(lim  ≡    ( ))(...)()(lim 21 xhxhxh n
cx

+++
→

 

  =    







++








+









→→→
)(lim...)(lim)(lim 21 xhxhxh n

cxcxcx
 

  ≡    ∑
=

→







n

k
k

cx
xh

1

)(lim  

  for any  n ≥ 1  arbitrary functions  h1(x) ,  h2(x) ,  h3(x) ,  …,  hn(x) 

  whose limits exist as argument  x  approaches the given value  c . 

Define  p1 ,  p2 ,  …,  pn .  Proof: Let  p1 ,  p2 ,  …,  pn  respectively denote the limits of the functions  

h1(x) ,  h2(x) ,  …,  hn(x)  as argument  x  approaches the given real 

value  c ;   that is,  define the notation 

   pk   ≡   )(lim xhk
cx →

 for each integer   k  ∈  { 1 , 2 , …, n } . 

Explain what must be 

derived to complete this 

proof. 

  Then to prove this theorem it must be shown that 

  













∑

=
→

n

k
k

cx
xh

1

)(lim     =    p1  +  p2  +  …  +  pn    ≡    ∑
=

n

k
k

p

1

 . 
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Reason or comment Statement 

Select any  ε  > 0 .   Choose any arbitrarily small but nonzero value of  ε  > 0 .  By definition 

(213) of a limit, a corresponding value of  δ   must be found such that 

Describe the condition 

that  δ   must satisfy for 

the chosen value of  ε  . 

  













−














∑∑
==

n

k
k

n

k
k pxh

11

)(   <  ε for all  x ≠ c  such that | x − c |  <  δ . 

Def (213) of a limit. 

  The definition    pk  ≡  )(lim xhk
cx →

    for each   k  ∈  { 1 , 2 , …, n }   

means that values of  δ1 ,  δ2 ,  and  δn   can be found such that   

| hk(x) − pk |  <  
n

ε
    for all values of  x ≠ c  where    | x − c |  <  δk . 

Choose a value of  δ .   Let  δ   equal the minimum of the values  δ1 ,  δ2 ,  and  δn  . 

δ   ≡  min(δ1 , δ2 , …, δn ) . 

| x − c |  <  δ  ≤  δk . 

  For any   k  ∈  { 1 , 2 , …, n } ,   it will be true that   δ ≤ δk ,   and so 

if   | x − c |  <  δ   and   x ≠ c   then   | hk(x) − pk |  <  
n

ε
 .     Therefore, 

Rearrange the order of 

terms by repeatedly 

applying the commutative 

and associative laws of 

algebra. 

  













−














∑∑
==

n

k
k

n

k
k pxh

11

)(  =    ( )∑
=

−
n

k
kk pxh

1

)(  

Apply the triangle 

inequality (207)  n  times. 
   ≤    ∑

=

−
n

k
kk

pxh

1

)(  

Apply 

0  ≤  | hk(x) − pk |  <  
n

ε
 

with algebra;   def (214) 

of an iterative summation. 

   <    ∑
=

n

k
n

1

ε
    ≡    

444 8444 76

L

termsidenticalofsum n

nnn

εεε
+++  

The definition of 

multiplication by  n ;   

algebra. 

   ≡    )(n
n

ε
    =    ε . 
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Section 3. Slope of a line tangent to a parabola at any point 

Reason or comment Statement 

Overview of Section 3. 

Although several of the 

important techniques and 

notations introduced in 

this section are based on 

differential calculus, it is 

intended that a careful 

reader who is not already 

familiar with calculus 

should be able to 

understand these concepts 

from explanations here. 

300) In this Section 3,  statement (301) defines the slope and the y-axis intercept of a 

straight line,  statement (302) defines the slope of a line that is tangent at some 

point to the curve drawn by plotting a function and describes that slope as a 

derivative from differential calculus,  statement (303) uses that definition to 

derive an expression for the slope of a line that is tangent to the simple 

parabolic curve   f (x)  ≡  A x
2
   at any  x ,   statement (304) derives an 

expression for the slope of the line that is tangent to the alternative parabolic 

curve for function   g (x)  ≡  (B x + C)
2
   at any  x ,   statement (305) describes 

how solving for the argument’s value required to make a derivative equal zero 

can be used to find local minimum and maximum points of a function,  and 

theorem (306) states that the slope of the sum of any  n  functions equals the 

sum of the slopes of those functions at any given value of their argument. 

Define slope and y-axis 

intercept of a (straight) 

line.   “∆”  is the upper-

case Greek letter “delta”. 

301) The slope of a straight line  (such as a plot of the function   y  =  m x  +  b)   

equals the ratio of the change of the  y  coordinate (which is called the rise of 

part of the line and is traditionally denoted by  ∆y)  divided by the change of 

the  x  coordinate (which is called the run of the part and is denoted by  ∆x) . 

The coordinates of all 

points  (x, y)  on the line 

must have  y  =  m x  +  b . 

 Consider the part between any two points  (x1, y1)  and  (x2, y2)  on that line, so 

 y1   =   m x1  +  b          and          y2   =   m x2  +  b . 

Show that the slope of the 

line is  m . 

 Then the slope of that line equals  m  for any values of  x1  and  x2  (assuming 

the slope is finite so the line is not exactly vertical, and that  x1 ≠ x2)  because 

Def of slope;   defs of rise 

and run;   defs of  ∆x  and  

∆y ;    y  =  m x  +  b   for 

all points on the line. 

 slope ≡    
run

rise
    ≡    

x

y

∆

∆
    ≡    

12

12

xx

yy

−

−
    =    

12

12 )()(

xx

bxmbxm

−

+−+
 

Algebra;   algebra.   =    

12

12 )(

xx

xxm

−

−
    =    m . 

Show that the y-axis 

intercept of the line is  b . 

 The y-axis intercept of that line equals  b  because the  y  coordinate at which 

the line crosses the y-axis  (that is, where  x = 0 ,  again assuming the line is not 

exactly vertical so the slope of the line is finite)  is 

Def of the y-axis intercept.  ( y-axis intercept) ≡≡≡≡    ( y  coordinate of the point on the line where  x = 0) 

y  =  m x  +  b   for all 

points  (x, y)  on the line;   

substitute  x = 0 ;   

algebra. 

  ≡    [ m x  +  b ]at x =0    =    m 0  +  b    =    b . 
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Reason or comment Statement 

Define the slope of a line 

that is tangent at some 

point  (x , f (x))  to the 

curve from plotting the 

function  f (x) . 

That slope is called the 

derivative of function  

f (x)  in the terminology of 

differential calculus. 

302) Consider any point  (x , f (x))  on the curve produced by plotting a given 

function  f (x)  at some given value(s) of  x .   The slope of the line tangent to 

that curve with such a value of  x  can be approximated as the slope of the line 

between two points  (x , f (x))  and  (x+ t ,  f (x+ t))  on the curve for a small 

value of  t ≡ ∆ x .    In fact, the slope of the line tangent to that curve at the 

point  (x , f (x))  is defined as the slope of the line described in the previous 

sentence in the limit as  t ≡ ∆ x  approaches zero.   That means 

  (slope of line tangent to the curve of function  f (x)  at a given point  (x , f (x))) 

See defs (301) and (213);   

∆ f (x)  ≡  f (x+ t)  −  f (x)   

corresponds to  

∆ x  ≡  (x+ t)  −  t ; 

algebra. 

  ≡   








∆

∆

→∆ x

f

x 0
lim    ≡   









−+

−+

→ xtx

xftxf

t )(

)()(
lim

0
   =   







 −+

→ t

xftxf

t

)()(
lim

0
 

Define a simple notation 

for a derivative; 

define a more explicit 

notation for a derivative. 

  ≡   
x

f

d

d
   ≡   )(

d

d
xf

x
 

This is how to read those 

two expressions in words. 
  ≡ (the derivative of  f (x)  with respect to  x ,  evaluated at given argument  x). 

Describe two notations in 

the previous equation for 

a derivative of function  

f (x)  with respect to its 

argument  x . 

The notation  
x

f

d

d
  

represents a limit rather 

than simply a ratio 

calculated by dividing two 

tiny numbers. 

 That definition of a so-called “derivative” is a key concept of differential 

calculus.   In the 5
th

 equal side of the previous equation, the derivative is 

represented by the notation  
x

f

d

d
 ,  which is mnemonic for the ratio of an 

infinitesimally tiny (that is, a “differential  d f ”) change in the value of 

function  f (x)  divided by the corresponding infinitesimally small (or 

“differential  dx”) change in the value of argument  x .    However, that 

notation  
x

f

d

d
  and the equivalent notation  )(

d

d
xf

x
  actually represent the 

limit   






 −+

→ t

xftxf

t

)()(
lim

0
   rather than a simple ratio of two tiny numbers. 

Consider function  f (x)  

for a “vertical” parabola 

that is symmetric about 

the  y  axis with 

its minimum  (if  A > 0)  

or maximum  (if  A < 0)  

at the origin  (0, 0) . 

303) As an example, consider the particular function 

 f (x)   ≡   A x
2
 for all real argument values  x , 

 whose plot is called a parabola (which is one of the conic sections, together 

with a circle, an ellipse, and a hyperbola). 

 A plot of that function  f (x)  with the specific parameter value  A = 0.25  is the 

thick blue solid parabola shown in the following figure. 
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Reason or comment Statement 

  The goal here is to determine the slope of the thin red solid line that is tangent 

to the parabola at the red point   (x0 , y0)  =  (0.5, 0.0625) . 

The slope of line #1 

crudely approximates the 

slope of the tangent. 

 As a first crude approximation, consider the green dashed line #1 passing 

through the red tangent point   (x0 , y0)  =  (0.5, 0.0625)   and the green point   

(x1, y1)  =  (1.5, 0.5625) ,   both of which are on the parabola.    That line #1 

has a slope of 

Def (301);   t1  ≡  x1 − x0 .  (slope of green dashed line #1) ≡   
01

01

xx

yy

−

−
   ≡   

1

010 )()(

t

xftxf −+
 

Substitute values;   

arithmetic;   arithmetic. 
  =   

5.05.1

0625.05625.0

−

−
   =   

1

5.0
   =   0.5 . 

The slope of line #2 better 

approximates the slope of 

the tangent. 

 As a second, somewhat more accurate approximation, consider the purple 

dotted line #2 passing through the red tangent point   (x0, y0)  =  (0.5, 0.0625)   

and the closer purple point   (x2, y2)  =  (1, 0.25) ,   which has a slope of 

Def (301);   t2  ≡  x2 − x0 .  (slope of purple dotted line #2) ≡   

02

02

xx

yy

−

−
   ≡   

2

020 )()(

t

xftxf −+
 

Substitute values;   

arithmetic;   arithmetic. 
  =   

5.01

0625.025.0

−

−
   =   

5.0

1875.0
   =   0.375 . 

t2 = 

x2−−−−x0 

t1 = x1−−−−x0 

y1 −−−− y0 (x2, y2) 

(x1, y1) 

(x0, y0) 

Parabola 

y  =  f (x)  ≡≡≡≡  0.25 x
2
 

Tangent 

line 

Line #2 
Line #1 

y2 −−−− y0 
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Reason or comment Statement 

Find the exact slope of 

the tangent line using a 

limit as  t → 0 . 

 The exact value of the slope of the thin red solid tangent line can be obtained 

similarly by calculating the slope of the line through the point   

(x0 , y0)  =  (0.5, 0.0625)   and another point   (x0+ t ,  f (x0+ t))   on the parabola 

in the limit as  t  approaches zero.   That limit yields 

 
 (exact slope of the thin red solid tangent line at the point  (x0 ,  f (x0))) 

Def (302) of a derivative;   

def (302). 
  ≡ 

0at
d

d

xx
x

f

=









 ≡ 







 −+

→ t

xftxf

t

)()(
lim 00

0
 

f (x)  ≡  A x
2
   for this 

parabola;   algebra. 
  ≡ 













 −+

→ t

xAtxA

t

2
0

2
0

0

)(
lim  = 













 −++

→ t

xAttxxA

t

2
0

2
0

2
0

0

)2(
lim  

Algebra;   algebra.   = 












 +

→ t

tAtxA

t

2
0

0

2
lim  = ( )tAxA

t
+

→
0

0
2lim  

A t  →  0   as   t → 0 ; 

substitute values for this 

example;   arithmetic. 

  = 2 A x0 = 2 (0.25) 0.5       =       0.25 . 

Find the slope of parabola   

g (x)  ≡  (B x + C)
2
 . 

304) Similarly, for any real constants  B  and  C ,  the exact slope of a line tangent to 

the parabola   g (x)  ≡  (B x + C)
2
   at the point   (x, g(x))  for any real  x  is 

Def (302);   def (302).  (slope of parabola  g (x)) ≡    
x

g

d

d
    ≡    







 −+

→ t

xgtxg

t

)()(
lim

0
 

See the proof just below.   =    2 B (B x + C) . 

g (x)  ≡  (B x + C)
2
   for 

this parabola. 
 Proof: 

t

xgtxg

t

)()(
lim

0

−+

→
    ≡    

( )
t

CxBCtxB

t

22

0

)()(
lim

+−++

→
 

Algebra.   =   
( )

t

CCxBxBCCtxBtxB

t

)2()(2)(
lim

222222

0

++−++++

→
 

Algebra.   =   
t

CCxBxBCCtBCxBttxxB

t

)222)2(
lim

2222222

0

−−−+++++

→
 

Algebra;   algebra.   =   
t

CtBtBtxB

t

22
lim

222

0

++

→
    =    )22(lim 22

0
CBtBxB

t
++

→
 

B
2
 t  →  0   as   t → 0 ; 

algebra with the 

distributive law. 

  =    2 B
2
 x  +  2 B C    =    2 B (B x + C) . 
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Reason or comment Statement 

Explain how a derivative 

can be used to find local 

minimum or maximum 

points of a function. 

305) One important application of derivatives (that is, slopes of lines tangent to a 

curve) is using them to find the local minimum and local maximum points of a 

function.    As shown in the following example graph, derivatives have the 

value zero (that is, tangent lines are horizontal because they have zero slope) 

at each point where a curve reaches a local minimum (where the curve is 

“concave up”), a local maximum (where the curve is “concave down”), or an 

inflection point (where the curve changes from concave up to concave down 

as shown, or else from concave down to concave up). 

 

 

This curve is a plot of the function 

h(x)  ====  x
6
 −−−− 15.6 x

5
 + 97.5 x

4
 −−−− 310 x

3
 + 522 x

2
 −−−− 432 x + 138.3 . 

It has two local minima at the points  (1, 1.2)  and  (4, 3.9) . 

It has one local maximum at the point  (2, 7.1) . 

It has one inflection point at  (3, 6) . 

The slopes of the tangent lines (that is, evaluating the derivative 

of the curve) at all of those four points equal zero. 

Although it is not proved here, the derivative of  h(x)  is 

)(
d

d
xh

x
 =   6 x

5
 − 78 x

4
 + 390 x

3
 − 930 x

2
 + 1044 x − 432 

 =   6 (x − 1) (x − 2) (x − 3)
2
 (x − 4) , 

which obviously equals zero for each    x  ∈  { 1 , 2 , 3 , 4 } . 

 

Reason or comment Statement 

Find the minimum of the 

parabolic function  

f (x)  =  A x
2
  =  0.25 x

2
    

from stmt (303). 

 As a second example of this technique, statement (303) showed a graph of the 

parabolic function    f (x)  =  A x
2
  =  0.25 x

2
    and proved that its derivative is    

)(
d

d
xf

x
  =  2 A x  =  0.5 x .    That derivative equals zero when  x = 0 ,  which 

is at the minimum value of the curve plotted in statement (303). 

Find the minimum of the 

parabolic function    

g (x)  =  (B x + C)
2
    

from stmt (304). 

[2 B (B x + C)
2
]at x = −C/B  

=  0. 

g (−C /B)   ≡ 

[(B x + C)
2
]at x = −C/B  =  0. 

 As a third example of this technique, statement (304) proved that the derivative 

of the function   g (x)  =  (B x + C)
2
   is   )(

d

d
xg

x
  =  2 B (B x + C) .    That 

derivative equals zero at   x = 
B

C
− ,   where value of the original function  g (x)  

is   0=







−

B

C
g ,   which is at the minimum value of the parabolic curve 

corresponding to the function  g (x) ≥ 0  for all real  x . 

Inflection 

point 
Max 

Min 

Min 
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Reason or comment Statement 

Theorem that the slope of 

the sum of any  n  

functions equals the sum 

of the slopes of those 

functions at any given 

value of their argument, 

using def (302). 

See def (214) of sigma  

(∑)  notation for sums, 

and see def (302) of a 

derivative. 

306) ∑
=

n

k
k

xh
x

1

)(
d

d
 ≡   ( ))(...)()(

d

d
21 xhxhxh

x n+++  

  =   )(
d

d
...)(

d

d
)(

d

d
21 xh

x
xh

x
xh

x n+++    ≡   ∑
=

n

k
k

xh
x

1

)(
d

d
 

  for any  n ≥ 1  functions  h1(x) ,  h2(x) ,  …,  hn(x) , 

  assuming that all of those derivatives exist. 

 This theorem means that the derivative of a sum of any  n  functions equals 

the sum of the derivatives of those  n  functions. 

Define function  h (x)  for 

use in this proof. 
 Proof: Define the function    h (x)   ≡   ∑

=

n

k
k

xh

1

)(  . 

   The derivative of that function is 

Substitute   

h (x)  ≡  ∑
=

n

k
k

xh

1

)(  ;    

def (302) of a derivative. 

  ∑
=

n

k
k

xh
x

1

)(
d

d
 ≡    )(

d

d
xh

x
    ≡    

t

xhtxh

t

)()(
lim

0

−+

→
 

Substitute   

h (x)  ≡  ∑
=

n

k
k

xh

1

)(  .    ≡    
t

xhtxh
n

k
k

n

k
k

t














−














+ ∑∑

==

→

11

0

)()(

lim  

Rearrange the order of 

terms in the sums using 

the associative and 

commutative laws of 

algebra. 

   =    

( )

t

xhtxh
n

k
kk

t

∑
=

→

−+

1

0

)()(

lim  

The distributive law of 

algebra. 
   =    













 −+
∑
=

→

n

k

kk

t t

xhtxh

1
0

)()(
lim  

Thm (216);   def (302).    =    ∑
=

→







 −+n

k

kk

t t

xhtxh

1
0

)()(
lim     ≡    ∑

=

n

k
k

xh
x

1

)(
d

d
 . 

 



Derive  a  Linear  Trendline 

Revision 1.6 Section 4.  Determine a linear trendline 
February 3, 2012 

17

Section 4. Determine a linear trendline 

Reason or comment Statement 

Purpose of this Section 4. 

Stmt (404) explains a 

quantitative interpretation 

of the “best” line. 

400) Using the mathematical principles presented in Section 1 though Section 3 

above, this Section 4 derives the equation of the “best” straight line to 

approximate a set of any  n ≥ 2  pairs of  (x, y) coordinates for known sample 

points.  Microsoft Excel uses this method to calculate a linear trendline. 

Describe the given sample 

points and the straight 

trendline. 

401) Assume coordinates of  n ≥ 2  sample points  (x1 , y1) ,  (x2 , y2) ,  …,  (xn , yn)   

are known.   The goal is to determine the slope  m  and the y-axis intercept  b  

for the “best” straight line with the function    y  =  f (x)  ≡  m x  +  b ,    which 

should pass as near as possible to the  n  given sample points. 

Define  ek   to be the 

signed error from  k
th

  

sample point to the 

trendline. 

402) For each sample point number  k  ∈  { 1 , 2 , 3 , …, n  } ,  define the 

algebraically signed error from the  k
th

  sample point  (xk , yk )   to the point   

(xk ,  m xk + b)   on the trendline (which will eventually be calculated) to be 

 ek    ≡   m xk  +  b  −  yk   ≡   (vertical error from  k
th

  sample point to trendline). 

Interpret the algebraic 

sign of error  ek  . 

 Therefore, error  ek   is positive if the trendline is plotted above the  k
th

  sample 

point,  ek   is zero if the trendline passes through that sample point,  or else  ek   

is negative if the trendline is plotted below that sample point. 

 403) Consider the following example of  n = 5  sample points and a linear trendline. 

 

The 

coordinates 

of the  n = 5 

data samples 

follow: 

 

k xk yk 

1 2 4 

2 3 3 

3 5 6 

4 6 7 

5 7 6 

Statement 

(411) 

calculates the 

linear 

trendline. 

 

e1 < 0 

e3 < 0 

en > 0 

e2 > 0 

(x3 , y3) 

(x1 , y1) 

(x2 , y2) 

(xn , yn) 

e4 < 0 

(x4 , y4) 
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Reason or comment Statement 

Why would minimizing 

the sum of all  n  signed 

errors not yield a good 

trendline? 

See def (214) of sigma  

(∑)  notation for iterative 

summations. 

404) The “best” linear trendline can be found by minimizing some measure of the 

overall error between the given sample points and the trendline.   The 

summation  ∑
=

n

k
k

e

1

  of all  n  signed error terms defined just above would not 

be an appropriate measure of total error because that sum becomes more and 

more negative when a candidate trendline passes farther and farther below the 

sample points toward negative infinity.   Therefore, an attempt to minimize that 

simple sum of errors would drive the trendline toward  − infinity  regardless of 

what sample points are given. 

Minimizing the sum of 

absolute values of all  n  

signed errors would yield 

a good trendline. 

 An appropriate measure of total error to be minimized must increase whenever 

a candidate trendline gets farther away from given sample points in some 

reasonable sense.   Such a measure of total error might be the sum of the 

absolute values of the errors in definition (402). 

Actually the method of 

least squares will be used 

to find the “best” linear 

trendline by minimizing 

this sum of the squares of 

all  n  signed errors. 

 However, it is computationally easier and is generally more effective for 

reducing especially errors with relatively larger absolute values to determine 

the “best” linear trendline by minimizing the “total squared error” defined as 

the sum of the squares of the signed errors by 

 E
2
    ≡    ∑

=

n

k
k

e

1

2
    ≡    ∑

=

−+
n

k
kk

ybxm

1

2)(     ≡    (total squared error). 

Minimizing the sum of  
2
k

e   tends to reduce large 

absolute errors much more 

than minimizing the sum 

of  |ek |  would. 

 For example, an absolute error of  |ek | = 10  increases this total squared error 

by  10
2
 = 100  times as much as an absolute error of  |ek | = 1  does, whereas it 

would increase the sum of  |ek |  values by only 10 times as much.   That 

indicates why the total squared error  E
2
  emphasizes larger absolute errors 

much more than the sum of absolute errors does. 

See definitions of the 

slope  m  and the y-axis 

intercept  b  in stmt (301). 

See def (404) of the total 

squared error  E
2
. 

The figure in this 

statement will be used to 

explain how the method 

of least squares is derived 

in stmts (406) through 

(410) just below. 

405) Therefore, the method of least squares will be used to determine the slope  m  

and the y-axis intercept  b  of the “best” trendline   f (x)  ≡  m x  +  b   by 

minimizing the total squared error  E
2
 .   To understand how to choose values 

of  m  and  b  to minimize  E
2

,  start by considering how  E
2
  changes as a 

function of  m  and  b .   Based on the equation at the end of statement (404) 

just above and comparing it with statement (304) in Section 3, a plot of  E
2
  

while varying  b  but holding  m  constant is a parabolic curve, and also a plot 

of  E
2
  while varying  m  but holding  b  constant is another parabolic curve.   

That is shown in the following sketch of  E
2
  as a function of both  m  and  b .   

The bowl-like surface is called a “paraboloid”;  or more precisely, this is an 

“elliptic paraboloid” to distinguish it from a “hyperbolic paraboloid”.  (See 

webpage http://mathworld.wolfram.com/Paraboloid.html.) The minimum value 

of  E
2
  is at the bottom point (which is called the “vertex”) of the paraboloid. 
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Reason or comment Statement 

Determine a first 

constraint on  m  and  b  

that must be satisfied at 

the minimum point of the 

paraboloid in figure (405) 

when  m  is held constant 

while  b  varies. 

406) As described in statement (305), the slope equals zero for a line that is tangent 

to a curve at a point where that curve has a local minimum.  That means the 

derivative of the function represented by that curve equals zero at the local 

minimum point.  Therefore, the minimum point on the parabola which is the 

intersection of the paraboloid surface of  E
2
  with a vertical plane parallel to 

the  b  and  E
2
  axes where  m  is held constant (possibly at its best value) while  

b  varies must satisfy the constraint 

See stmt (305); 

substitute     E
2
  ≡    

∑
=

−+
n

k
kk

ybxm

1

2)( . 

 0 = 

constant
withvary

2

d

d

=










m
b

E
b

 ≡ ∑
=

−+
n

k
kk

ybxm
b

1

2)(
d

d
 

Thm (306);   thm (304).   = ∑
=

−+
n

k
kk

ybxm
b

1

2)(
d

d
 = ∑

=

−+
n

k
kk

ybxm

1

)(2  

Algebra using the 

distributive law. 
  =    ∑

=

−+
n

k
kk

ybxm

1

)(2  

Rearrange the order of 

terms by applying the 

associative, commutative, 

and distributive laws of 

algebra. 

  =    













−+ ∑∑∑

===

n

k
k

n

k

n

k
k ybxm

111

2  

This parabola is the intersection of the 

paraboloid with the vertical plane where  

m  is the best constant and  b  varies. 

This parabola is the intersection of the 

paraboloid with the vertical plane where  

b  is the best constant and  m  varies. 

best  m 

best  b 

m  axis 

b  axis 

E
2
  axis 

min 

at 

vertex 
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Reason or comment Statement 

Definition of 

multiplication by  n . 
  =   














−+ ∑∑

==

n

k
k

n

k
k ynbxm

11

2  . 

Determine a second 

constraint on  m  and  b  

that must be satisfied at 

the minimum point of the 

paraboloid in figure (405) 

when  b  is held constant 

while  m  varies. 

407) Similarly as described in statement (305), the minimum point on the parabola 

which is the intersection of the paraboloid surface of  E
2
  with a vertical plane 

parallel to the  m  and  E
2
  axes where  b  is held constant (possibly at its best 

value) while  m  varies must satisfy the constraint 

See stmt (305); 

substitute     E
2
  ≡    

∑
=

−+
n

k
kk

ybxm

1

2)( . 

 0 = 

constant
withvary

2

d

d

=










b
m

E
m

 ≡ ∑
=

−+
n

k
kk

ybxm
m

1

2)(
d

d
 

Thm (306);   thm (304).   = ∑
=

−+
n

k
kk

ybxm
m

1

2)(
d

d
 = ∑

=

−+
n

k
kkk

ybxmx

1

)(2  

Algebra using the 

distributive law. 
  =    ∑

=

−+
n

k
kkkk

yxxbxm

1

2
)(2  

Rearrange the order of 

terms by repeatedly 

applying the associative, 

commutative, and 

distributive laws of 

algebra. 

  =    













−+ ∑∑∑

===

n

k
kk

n

k
k

n

k
k

yxxbxm

111

2
2  . 

  The two constraints on  m  and  b  in equations (406) and (407) just above can 

be rearranged by algebra into equations (408) and (409) just below. 

Apply algebra to the 1
st
 

and 8
th

 (last) sides of 

eqn (406). 

408) ∑
=

n

k
k

y

1

 =    nbxm
n

k
k

+∑
=1

 . 

Apply algebra to the 1
st
 

and 7
th

 (last) sides of 

eqn (407). 

409) ∑
=

n

k
kk

yx

1

 =    ∑∑
==

+
n

k
k

n

k
k

xbxm

11

2
 . 

State the method to 

compute  m  and  b  for 

the best trendline. 

410) Cramer’s rule in theorem (104) can be used to solve the two simultaneous 

linear equations (408) and (409) to compute the best values of the slope  m  

and the y-axis intercept  b  by the algorithm 
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Reason or comment Statement 

Apply Cramer’s rule (104) 

to eqns (408) and (409). 
 D ≡    (Cramer’s denominator)    =    

∑∑

∑

==

=
n

k
k

n

k
k

n

k
k

xx

nx

11

2

1  

Evaluate the 2×2 

determinant by def (103). 
  ≡    ∑∑

==

−












 n

k
k

n

k
k xnx

1

2

2

1

 ; 

Apply Cramer’s rule (104) 

to eqns (408) and (409). 
 best  m =    

∑∑

∑

==

=
n

k
k

n

k
kk

n

k
k

xyx

ny

D

11

11
 

Evaluate the 2×2 

determinant by def (103). 
  =   




























−




























∑∑∑
===

n

k
kk

n

k
k

n

k
k yxnyx

D
111

1
 ; 

Apply Cramer’s rule (104) 

to eqns (408) and (409). 
 best  b =    

∑∑

∑∑

==

==
n

k
kk

n

k
k

n

k
k

n

k
k

yxx

yx

D

11

2

111
 

Evaluate the 2×2 

determinant by def (103). 
  =   










































−




























∑∑∑∑
====

n

k
k

n

k
k

n

k
kk

n

k
k yxyxx

D
11

2

11

1
 . 

Show how to solve for the 

trendline in figure (403). 

411) The algorithm in statement (410) just above can be used to compute the linear 

trendline from the sample points shown in figure (403) as follows. 

 

k xk yk 
2
k

x  xk yk m xk  +  b ek   ≡   m xk  +  b  −  yk 

1 2 4 4 8 3.476744186 −0.523255814 

2 3 3 9 9 4.139534884 1.139534884 

3 5 6 25 30 5.465116279 −0.534883721 

4 6 7 36 42 6.127906977 −0.872093023 

5 7 6 49 42 6.790697674 0.790697674 

       

n  = ∑
=

n

k
k

x

1

  = ∑
=

n

k
k

y

1

  = ∑
=

n

k
k

x

1

2
  = ∑

=

n

k
kk

yx

1

  =   

5 23 26 123 131   
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Reason or comment Statement 

Cramer’s denominator is 

used to calculate 

m  and   b . 

 D = ∑∑
==

−












 n

k
k

n

k
k xnx

1

2

2

1

 

Substitute values;   

arithmetic. 
  = 23

2
  −  5 (123) = −86 ; 

The slope of the best 

linear trendline. 
 m = 




























−




























∑∑∑
===

n

k
kk

n

k
k

n

k
k yxnyx

D
111

1
 

Substitute values;   

arithmetic;   arithmetic. 
  = 

86

)131(5)26(23

−

−
         =         

86

57
 ≈ 0.662790698 ; 

The y-axis intercept of the 

best linear trendline. 
 b = 










































−




























∑∑∑∑
====

n

k
k

n

k
k

n

k
kk

n

k
k yxyxx

D
11

2

11

1
 

Substitute values;   

arithmetic;   arithmetic. 
  = 

86

)26(123)131(23

−

−
         =         

86

185
 ≈ 2.151162791 . 

Sample points with at 

least two distinct  x  

coordinates are needed. 

412) The least squares algorithm in statement (410) cannot calculate any linear 

trendline if only  n = 1  sample point is given or if all  n ≥ 2  sample points 

have the same  x  coordinate, because then Cramer’s denominator is 

Stmt (410);   assume  

xk = x1  for all  1 ≤ k ≤ n . 
 D = ∑∑

==

−












 n

k
k

n

k
k xnx

1

2

2

1

 = ∑∑
==

−












 n

k

n

k

xnx

1

2
1

2

1
1  

Algebra;   algebra.   = )()(
2

1
2

1 xnnxn −  = 0 , 

See stmt (209).  but division by a denominator equal to zero is undefined. 

List mathematical topics 

introduced in this 

document. 

413) In summary, this document introduced the following important mathematical 

topics in an effort to derive an algorithm to calculate the slope  m  and the 

y-axis intercept  b  of a linear trendline   y  =  m x  +  b   that approximates an 

arbitrary number  n ≥ 2  of discrete samples  (x1 , y1) ,  (x2 , y2) ,  …,  (xn , yn ) . 

 1. Matrix theory and Cramer’s rule from linear algebra. 

 2. Properties of the absolute value function. 

 3. The concept of limits of a function at values of the argument where the 

function may or may not be defined. 

 4. Sigma  (∑)  notation for an iterative summation. 

 5. The slope of the line that is tangent to a curve (such as a parabola) at a 

point on that curve, using a limit. 

 6. Express the value of that slope as a derivative of the function for that 

curve from differential calculus. 

 7. How to use slopes (that is, derivatives) to find each local minimum (or 

maximum or inflection point) of a function. 

 8. How to determine the best linear trendline by minimizing the least 

square error for the given sample data points. 
 


